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1. INTRODUCTION

Let (T,A) be a measurable space and (Q,F,P) be a probability space. The

random variable valued set function X on (T,A) is said to be an independently

scattered measure (i.s.m.) on (TA) if for each sequence of pairwise disjoint

sets {Aklk>1 in A, {X(Ak)}k>l is a sequence of independent random variables on

(Q,F,P) and

X( U Ak) I [ X(Ak) a.s.
k=l k-l

We say that X is an L2( 2)-valued i.s.m. if X(A) belongs to L2 (Q2,F,P) for each

2
A E A and the above series converges in L (Q).

Let n > 1 and Xl, ,Xn be L (Q)-valued i.s.m.'s on (T,A). Define the

L 0 (Q)-valued product set function XIx.. ×X n on the semifield of rectangles of

Tn by

1 Xl.. XXn(AIx ... = X1(A) .. .Xn (A) (1.1)

where A A i 1,...,n. Extend X1x.. .xX in the usual way to be an additive

set function on the field generated by the rectangles of "n. Engel and

Kakutani ([4]) have considered the extension of Xix...xXn to an L2 (S)-countably

additive measure on (Tn,An). The case n = 2 has been studied by Rosinski and

Szulga [151. In both works additional higher moment conditions are imposed on

the i.s.m.'s Xl,... ,Xn to assure that the product stochastic measure X 1X...XX

is I, 2 )-valued.

'*" In this work we use the symetric tensor product rather than the usual

product to obtain a vector valued measure on (Tn,An) denoted by Xl. . oNX, and

called the symmetric tensor product measure (s.t.p.m.). It is such that for

A. _ A i = 1,...,n

X Xl...OXn(A1x... xA) = X1 (A1)O...X(A) (1.2)

.• . .. + o _ • . . * t . A.~ . . A. . . .. . . . .
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where a means symmetric tensor product. By doing this we exploit the

L 2l(o)-valued property of Xl,... ,Xn using Hilbert space methods.

In general we consider the case when X1,,Xn are orthogonally scattered
-

measures (o.s.m.) on (T,A) (not necessarily stochastic) with values in any

real separable Hilbert space H (Masani (111), of which zero mean L2 (Q2)-valued

i.s.m. 's are particular examples. Similar to the classical theory of real

valued product measures one can construct (Chevet [1, Th. 2.11) an Hon-valued

o.s.m. X1® ...OXn on (Tn,An), where Hn is the n-fold tensor product of H and

e denotes tensor product. Moreover, if we consider a sequence of o.s.m.'s

f1X> 1 on (T,A) with values in H, it is possible to obtain an infinite tensor

product valued o.s.m. on (Tco,AW), where TO= X T and A= A (Perez-Abreu
i=l i=l

[14, Th. 2.1.4]). However, in connection with stochastic processes and

product stochastic measures the concepts of symmetric tensor product and the

Exponential Hilbert space of H (EXP(H)) are more useful. For example, EXP(H)

will be the common range of the different powers (in the symmetric tensor

product sense) of the s.t.p.m.'s.

In Section 2 of this work we establish a link between the spaces EXP{H)

and L (Qa(H),P) where H is the Hilbert space direct sum of a Gaussian space

and a generalized Poisson space. This result extends the work of Neveu [121

and Kallianpur [81 who established this link in the case H is a Gaussian space.

In Section 3 we take H to be a real separable Hilbert space and construct

the symmetric tensor product measure XIo... X of the o.s.m. XI  ,Xn with

values in H. This is a vector valued measure with values in EXP(H). Then we

use the vector valued measure approach to construct multiple integrals, i.e.r the latter are constructed as integrals w.r.t. the s.t.p.m.'s using the theory

o integration w.r.t. vector valued measures.

I .

A. - . *.

,. ,, . .. ,,.- ,,- ,,% ,,. . ,. , . - -. - . . . .. .. ... '... . • * . .- . ,. .. - . . . , •. • . .. . '. . •
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In Section 4 we take X 1,...,X n to be L
2( )-valued i.s.m.'s and apply the

results of the last two sections to construct an L2 ()-valued product stochastic

measure also denoted by X 1®... x n . In the construction of this measure we do

not need to assume additional higher moment conditions on X1 .... X . Further,

using the method of qection 3, we construct integrals w.r.t. X ...OX n, showing

that this approach includes the known centered multiple stochastic integrals of

151 [7] [13] and [16]. The measure X1 O...OX is different from the product

stochastic measure X l.. .xX in [4]. Comparisons between the two measures isn
the subject of Section 5.

'p

3'
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2. EXPONENTIAL SPACES

Let H be a real separable Hilbert space with inner product < H'.>H. For

h. E H i = 1,..., n let h 1...Oh denote their n-fold tensor product and1 -. 1 n

define

n~hl '  "hn) = n! h1 " "  (n) (2.1)

where TI = (TI(1),...,fl(n)) is a permutation of (1,2,....,n) and the sum goes

over all such permutations. We recall that the n-fold symmetric tensor product

Hilbert space Hon is the subspace of HOn which is the closure of the finite

linear combinations of elements of the form (2.1), and that the operator S can
on on

be extended to an orthogonal projection operator on H~n whose range is H We
write hlI o ... oh n S (hl0...h ) and note that for hi,g i E H i =1...,n

n n n

<h ...@h 1 @... 1gn > _ , >H . <h g >H (2.2)
1 n' n n! <hlg(1) " n' I(n) H "

Let us denote by H@° the one dimensional space of real constants and by

LXP(tl) the orthogonal direct sum of the subspaces HOn n > 0. This space is

called the Exponential space of H and in the mathematical physics literature

it is known as the Fock space. For the sake of completeness and further

reference we review some facts about this Hilbert space (see Guichardet [6]):

i) The elements of EXP(H) are interpreted as sequences h = (h0,h1  ) ...

h E H n > 0 with inner productn -

<h'k>e = <hi ki> ft (2.3)
n>0 H

ii) Of special interest are the "exponential" elements

expo(h) = (l,h, (2) 1/2h@2 ,...) h E 11 (2.4)

.., .i -2 ." .3 % ? ..? .., , , , , -? ' , -i ." i ..- -.,< ..-" i . -2 , i ' .--' - " .. .--' -' . . --' - .. -, - - . . , -- ---
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which generate EXP(H) and whose inner product is given by

<exp13(h),expQ(k)> = exp (<h,k>H). (2.5)

iii) For each n > 0 H n is seen as a subspace of EXP(H) and for n m on

and Hm are orthogonal with respect to the inner product <-,-> . Then we• e

can write

exp a (h) = h

n>O

Let (SIF,P) be a complete probability space and H be a real Gaussian
g

space of random variables defined on (6Q,F,P). It is well known (Neveu [12]

Kallianpur [8]) that
T 2

- EXP(Hg) L (2,Fg,P) (2.6)

where Fg =a() and for h E H
g g

(exp ® (h)) exp(h - (1/2)E(h 2)) (2.7)

and that {(exp @ (h)): h E H } generates L2(Q,Fg,P), where E(.) denotes expectedg

value.

A similar result is possible for the Poisson case: Let q be a centered

Poisson random measure on an arbitrary measurable space (S,E) with control

measure v and let

2H {I (f): f E L (S,E,\)} (2.8)
q q

where I q(.) denotes the isometric integral w.r.t. the o.s.m. q. The Hilbert

space of random variables H is called the generalized Poisson space associated
q

with q. The following result is Proposition 7.13 in Neveu [12] (see also

Kre6 [91).

b -'' " - .' ' " " " " - " " . . . . . . '. . .. . . ,. - '- - - -



6

- PROPOSITION 2.1. Let v be a finite measure on (S,U). Then

EXP(H q -- (Hq) ,P) (2.9)

where Fq  a(H and for f E L (S,E,v)

N(S)

te q (f)) ) }exp(-fsf(s)dv(s)) (2.10)j=1 l z

where { )j> is a sequence of independent random elements, independent of

N(S) = q(S) + v(S), each - taking values in S and having distribution {v(S)J-v(.).'3

N The next theorem extends the above result to the case when V is a

a-finite measure on (S,E). For this situation Surgailis [16] has shown an

isometry between EXP(Hq) and L2 (Q,Fq,P). However we cannot use Surgailis'
q.

result since he uses multiple Poisson integrals techniques to prove it, and we

" . need to proceed in the opposite direction, namely, we first have to identify

EXP(H () and then construct product stochastic measures and multiple stochastic

integrals of q(see Section 4).

THEOREM 2.1. Let v be a a-finite measure on (S,E). Then

EXP(1) LU{,Fq, P) (2.11)

where F u(Hq) and for f E (S,E,v)

,7-[" " ' -  (exp I qf) I IT (l*f(z.i))exp(-f f(s)dv(s))1 (2.12)

q -i=I j=I si

.. ¢.z [ where:li) S. i > l are disjoint sets in F, 0 < v(S i ) < ooand II S. = 5; (ii)
. .,1 .- i>l '

'" for each i = 1,2,.... and j 1,2,.... Z i  is an S.-valued random element with

W q

distibuiongiven by temeasure v(Si. l v(-), adfor each i = 1,2.... \(Si

ilij!71ii!I tollows a Poisson distribution with parameter v)(S.); (iii i. , N,,S i)

1= j= S

1,,..., j = 1,2,... are mutually, independent.

* * . % . - . - . . .-. ...

- ~itibto gie by- the- ¢> meaur \)( V(-) and fo eac ,',4 1,2 .-. : ..... ,. N(S-.'
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In order to prove this theorem we will use the following technical result

which proof follows easily.

LUE34,A 2.1. Let v and Si, N(Si), Z i  - = 1,2,..., i = 1,2,... be as in

-(i) (iii) of the above theorem. If for some i > 1 g L (si,EnSiv) then

N(S.)

E( f1 g(Z '))) = exp(f (g-1)d).
j=I 3--i

Proof of Theorem 2.1. We have to show the following three conditions:

a) for each f c L 2(S,E,v) (exp @ (I q(f))) c L2(Q,Fq,P).

.1b) for fit2 E L2(S,E,v)

E((exp a (Iq(fl)))O(exp @ (Iq(f 2))))= exp(fsflf 2dv).

c) t(exp @ (I (f))): f E L (S,t,))} generates L2(Q,F
q

Since v is a a-finite measure on (S,E) there exists a sequence of sets

{Si i>1 in E such that 0 < v(Si) < - and U Si  S. The existence of the
1 i= 1

random elements Z ii i=1, 2,..., i=1,2, . . satisfying (ii) and (iii) follows

from the construction of a Poisson random measure N with control measure v.

2 2Let f E L (S,E,v), then for each i>l f belongs to L (Si,EnSiv) and

L1 (SiESi,v). Then by taking g = (l+f) in Lemma 2.1 we obtain

N ( S )1E R (l+f(Z i)))exp (-I fdv) 1 i 1,2,...
_~ S.

'1(s.)N(Si )

Then using (iii) G n (I+f(Zj ))exp(-fS.fdv) is a sequence of independent
1

n
random variables with E(Gi) = 1 i>1 and therefore D = Rl G. is a martingale.

in 1

Noxt, using Lemma 2.1 with g=(l+f) 2 and the independence of Z i  N(Sm ' 'Si'(
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:..- -. j=l,2,..., iPl,2,...

rN(Si) 2
' i f( ) 2dv Oc fS 2d <

- ED I "I (+f (Z3  -,, fdvj =exp~f v<x~s v" .n i- =l j )) . S f

1

Then by the martingale convergence theorem Dn converges a.s. and in mean

square to ((exp @ (I (f))). Therefore
q

N(Si) 2 2.

lim 2 n exp(f frdN)=exp(f 2df <l J I (l+f(Z(i))exp(-fSifdv) = n E Dn = nf S. dv)<c°

which shows (a).

Let fl,f L (S,E,v), then applying Lemma 2.1 to g (l+f )(l+f 2) one1' 2

shows in a similar way as above that

n N(Si)L:: (exp(D(Iq(fl))excpe(Iq(f, )))=lim RI E R (l+fl)(l+f2)(Z (i) )exp(-fs.(fl+f2 )dv)

n- i=l j=l 1dv j

n
=lim I exp(fS, ff dv) = exp(fsiflf 2 dv)
n-c i=l 1

proving (b).

Finally, to prove (c) let G E L 2 (Q,FqP) and suppose that

E(exp@(I (f))G) 0 for all f c L2 (S,E,v).
q2

1.-c, aive to show that G(=O a.e. dP . Using (2.12) we have that for all f,:-L-(S,E,v)

.(l+f(zji)))exp(-f fdv)G = 0.
=l1 S.

2
Next let i 1 be fixed and for g E L (S ,EnSi.,v) define f: S I 1R )y

2
"(t) t S. and zero if t / S.. Then f E L (S,E,v) and

. " .

--? > , . . , ... J. . , , -,.. . . . .
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N N(Si 
2

E 1n1 (1+g(Z! ))exp('" gd)G--Oall g c L (Si, EnSi,v)

* Hence by Proposition 2.1 E(GIF q) = 0 a.s. where F9 = o(I (g): gEL,2(s i EnSi,

and F9 c F all i>l. Thus for all n>1 E(GI v )=0 a.s. since F are1J -- 1 -i 1  1 ' "'

n 00independent a-fields. Let F = v Fj then Fq = v F
n i-l n=l n

Thus since E(G2 ) < - it follows by the martingale convergence theorem that

G=O a.s. dP and the theorem is proved.

The last result of this section is a general one, in the sense that it

identifies the exponential space of any Hilbert space H which is a direct

sum of an arbitrary Gaussian space H and an arbitrary Poisson space Hq,Jg

where H and H are stochastically independent.
g q

TIlORFN 2.2. Let (Q,F,P) be a complete probability space and q be a centered

Poisson random measure on a measurable space (S,E) defined on (Q,F,P), with

a-finite control measure v and generating the Poisson space (2.8). Let H be a:.." g

Gaussian space on (2,F,P) stochastically independent of the system of random

variables H . Define the a-fields Fg = o(Htg), Fq = o(H q) and the Hilbert

space H = H * H . Then
g q Y

EXP(H) L2 (Q,FgvFq,P) (2.13)

where for h 11, 1 = h + hq, h E lit h E Hq, y EXP(H) L 2 (P2 ,FgvF ,P) is
g g q

defined by

y(exp a (h)) = (exp * (h )) (exp o (h q)) (2.14)

where q and ¢ are the isometries given in (2.7) and (2.12) respectively.

..................................



Proo f. It follows Iv the inde1wrdent ) . It and H that tor all h, It
y(exp a (h)) is an elenrxt o I ' ' , that ii (expsIh) - exp) ,.y

- Next we shall prove that .(-kro,,h h v .enerates I> , F v0 4.1' !et

.. (Q,FgvFqP) and suppose that

E(It (e-p 9 h I = , oi eath h it.

Then for all h E H and h H! -(Xw(exp 3 (h )re."( U) (h

But tl(exp c- (h)): hg H g } and {4(exp @ (hq)): h E 1- } generate
2 2 q

L2,F g P) and L(Q,Fq,P) respectively. Then for all A I F9 and

A2  f A dP=0. But since the a-fields Fg and F are independent then
1 A2

"FgvFq is generated by the field C of all finite disjoint unions of sets

A I A2 A, E Fg , A 2  Fq . Thus since Z is P-integrable C = {A E F: fA0ZdP 01

is a monotone class, and by the monotone class theorem
I ZdP = 0 V A E FgvFq

A

since C c c. That is, Z = 0 a.e. dP and the theorem is proved.• .0 FgvF q•

. .. *.
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3. THE Sy tTRI c TENSOR PROI.KU MEASLRE

Throughout this section %e assume, unless otherwise stated, that (T,A)

is a measurable space, H is a real separable Hilbert space with inner product

•<'>I and norm 1I'I1H. Furthermore for n > 1 let Xi i=l,...,n be o.s.m.'s

on A, taking values in H and with corresponding finite control measures

Pi i=l,...,n. Define the signed measures pij on A such that for i,j=l,...,n

uij (AnB) = <Xi(A), X. (B)> . (3.1)

If iWJ,.n.,n n E {1,...,n) let i. . *."..n0 . denote the real valued

,, n ) of P
product measure on (Tn,An of l

For A. c A i=l ,..., n define the Hn-valued set function X .. X on
-1 ' n

the semifield of rectangles of Tn by

X* a I...X (AIx...xA) : XI(A )0 ...X(A (3.2)1' n 1" 1A)® 1 "n(An)

This vector valued function can be extended in an additive manner to the field

generated by the rectangles in A. The next result gives the extension of

X.@...aX to the a-field An. This Hn -valued measure is called the sutmitic

t ,z ptc poduct measut c. Observe that for each n>l it is an EXP(H) -valued

measure.

THEOR4 3.1. Under the above hypotheses and notation there exists a unique

lHen-valued measure X X...Xn on (Tn,An) such that (3.2) is satisfied for
l" n

A. r A i=l,.. .,n and forA i"'An

,XI ... n n (3X (An(A) (3.3)
H

°F
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Proof. Let XIQ.. O  be the FI n-valued o.s.m. on (T,A n ) such that

X1®...OXn(A1 X,.. XA) = XI (A1).... X n (An) and

".'J:!X,O ... exn(A)II H Li 0 l ... Oil(A) (3.4)

(see I1, Th. 2.11 or 114, Th. 2.1.31). For A ,A define

X10... OX (A) = Sn(X ...eX (A))

where Sn is the projection operator on Hf
n with range H n defined in (2.1). Then

'.:.-{:{,.:. I @~l ...@X (A)I IH o IIl ...oX (A)I IH
n/ n -

and the a-additive property of X(A...oXn in 1?n follows by the linearity and

continuity of S . Finally (3.3) follows from (3.4) and the last inequality. Q.E.D.

n

Expression (3.3) gives an upper bound for the norm of XI*...GXn(A). We

shall now obtain an exact expression for this norm which uses the signed

n
measures pii defined in (3.1). For A E A and TI = (r(l),.,.,f(n)) a

permutation of (1,... ,n) define

A = {(tI p* tn  E Tn: (til(l) ...,t R(n)) E A}. (3.5)

LE NA 3.1. a) For A A and E Am

.-$<XlGo... QX (A) ,Xl@ ...o@X (B)> >= 6n<Xl .. X (A) ,Xla ... @Xn(B) >l~

An BT) (6 . (A B).
--'-'-:'~ ( "/; n( ' nll (n) (a B) = (<nm/n )IT[(1])""t'n n) AW ')

b) For A A

-.Xl@. .gXn(A) I2 = (n!1) l nfl(n)

,-", H n ( ) ( ) ..4l?{ )( qr)
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Proof. Since Xa.. . .eX and Xl0.. CoX are Hon and H m valued respectively and1 n 1""

"?n and Hem are orthogonal subspaces of EXP(H), then XIe. .*.Xn and Xe ""e..

are orthogonal for nm. Hence assume n--m and let A = AIx×... xAn, B = B X ...XB
1 n

where Ai,B i E A i=l,...,n. Then from Theorem 3.1, (3.2) and (2.2)

<Xa. X n(A) ,X1 .@...OXn(B)> n <XI(A1 )a.. .Xn(An) ,Xl(Bl)o ...OXn(Bn) Hon

- (n!)_ -z <X (AI) X(l) (B(I))>H .<X (A) XT(n) (BIT(n) ) )H

=.$ (n!) -1 (A nB .1 (An

- ( 1  111l(l) 1 f(1 ""nII(n) (AnBl(n))

= (IIT(1) "'nfl(n) ((AI x...xA) n (B1x...xB)n

S(n!) II (AnB).

ITn

which shows (a) if A,B are rectangles. The result is extended in an obvious

manner to the field generated by the rectangles. Finally an approximation

argument shows (a) for any AB E A (see details in [141). The proof of (b)

follows from (a) by taking B:A.

COROLLARY 3.1. Let A n = {A . A : A for all Rl}. Then the vector measure

X @ ... @X is an H n-valued orthogonally scattered measure on (Tn,A*n) with
nn

control measure ujn given by

~n (A) = (n !)"~ 1 f~)~~ lne
u A) W Ul()'®nn(n) (A) A A n

Proof. Since A A implies A A for all RI, then A n A A for all fI

and therefore using Lemma 3.1

[%"-
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.. X X(A)i (n!) il()* .iI( (A)

i 1Xx ,.Xn(A o l n (n ) 1  Tl (1)' •'Jn1(n)

from which the corollary follows.

The above results can be obtained, with the obvious modifications, if

-'-- the measures jl"'. are assumed o-finite. However we have restricted

ourselves to the case where each o.s.m. is bounded and defined on a a-field.

The reason for these requirements is that we are primarily interested in using

-"2. the well established theory of vector valued measures in order to construct

multiple integrals w.r.t. X10... OXn, and in this theory these requirements are

needed. Moreover from now on we will assume that T = [0,1], A = B(T) and

W" ...."*n are finite non-atomic measures. For terminology and concepts from

the theory of vector valued measures we refer to Diestel and Uhl [2] and

Kussmaul [10]. An important notion in this theory is that of semivariation

of a vector valued measure. It plays a key role in constructing integrals.

The next lemma gives useful upper and lower bounds for the semivtariation of

the EXP(H)-valued measure Xla*.. @X on a set A E A , which we denote bv

Sv(X e ... XOX ;A).

L/VMA 3.?• For A E An

(n!)-1 .@tn(A)}l 2<sV(X . eX ;A)<{ijl .. n (A))1/2  (3.6)

Proof. For each permutation R = (1(1),...,1(n)) of (1,...,n) let

= ( ... t) T n ; t .(1)<.<tf()}" (3.7)

Note that if H and f* are two distinct permutations of (1, .. ,n), then "I and

are disjoint. Hence since the measures p l,...,n are non-atomic

T o.v



ul®... nA -- (A... n( -T). (3.8)

Next for each R n = for each fl* distinct from the identity

permutation. Thus using Lena 3.1(b)

Z HXH n = (n!)-lil e ...®en(A)

and from Proposition 11 in Diestel and Uhl [2]

4'. 2 2! , ili n! .iI JXl®"". OXn (A n )[z  < n! I {sv(Xe" a .. Xn ;A }z

n n-1 n
=(n!)2 {sv(X1 ...

'OX n ;A } 2

r: from which the first inequality follows. The proof of the second inequality in (3.6)

follows using the definition of sv(Xl. .X n;A) and the fact that for all

finite collection of real numbers (a j=l,...,m such that Ia.I < 1 and
m

A ,A disjoint elements in An such that U A.=A, the following inequality
j=l

holds

j Xl .X (A.)1I 2  < OI (A).
l ... @" n o1n 1 n

The next two consequences of the above lemma characterize convergence in

X l... X n-measure Oussmaul ([10]) in terms of the control measures '1 .' n"

(ROLIARY 3.2. For a sequences {AIm>i in An sv(Xl .. %X .;A goes to zero if and
m m~lnJ fli-

only if j n.. .®n(Am ) goes to zero as m

COROLIARY 3.3. A sequence of real valued An -measurable functions (fM n>l. - .... . .. ...

converves in XI0... (OXn -measure to a real function f if and only if fM converges

to f in Ul1 .. .@n -measure.

We now present the definition of an XP ...3X -integrable function in the

sense of the theory of integration with respect to bounded vector valued

,v . nsures ([10, Def. 10.31).

, -p,
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n
DEFINITION 3.1. Let f(t) be an A -measurable simple function on Tn , that is

k
:.'.: f~t) = a (_ t_ = (tl, ... Pt n) (3.9)

j I

where a ic JR j=l,...,k and Al,... ,Ak are disjoint elements in An . The integral

of f with respect to X1a... .oXn denoted by !Tnf(t) d(Xla... OX)n (t), is the

element of I n given by

k
J f(t)d(X n...eX )(t) =a D.Xe... .X n (A.). (3.10)

A real valued function f on Tn is said to be Xle...eX -integrable if there
1n

exists a sequence ifm}m>l of A n-measurable simple functions on Tn such that

i) f converges to f in X @...X -measure andm 1 n

ii) lim f (lAfm)(t)d(X1@...lX n )(t) 0 as sv(X ...@X n;A) 0
Tn

uniformly in m 1,2,...

PROPOSITION 3.1. Let f(t) t E Tn be an X 1...eXn-integrable function and

*f {fImm>l be a sequence of A n-simple functions satisfying (i) and (ii) above.

Then for every A c An (lAf)(t) is Xl D... eXn-integrable and the sequence
{~~~ U (1fm ) (t_) d(Xlae ... @Xn) (t)) }

nconverges to an element in Hen uniformly in A E A . The element

- (1Af)(td(Xl... .@Xn)(t)= lim f (If )(t)d(Xle.. ..X n) (t)
n- m - n -,* I Am

is called the integral of f with respect to Xla".. OX over the set A.
". 'n

.9. .. 4 - - . . .. . .. . , . . . . " . . " . . . .. . . . . . . . . . . . , . . .
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Proof. See ([101) who proves it for any bounded vector valued measure.

The next result characterizes X o...X -integrability in terms of the

I::k; measures 1Ji,... , n -F1". n

[mEORI 3.2. A real function f is X 9... OXn-integrable if and only if

f E L 2(TnAn,Wl o..p n).

Proof. Assume f E L 2 Op ... Opn, then there exists a sequence Ifmm> of

An-measurable simple functions such that Ifm I < IfI a.e. d(ple ... :n) for

m > 1 and fm converges to f in L2 (l ... 91n). Then by Corollary 3.3 fm

converges to f in Xla... ®Xn-measure. Thus condition (i) in Definition 3.1 is

satisfied.

nz
Next for A A 1A(t)(fM(t) fk(t)) = j aj(I for some a. E JRA- i- - i=l j

nnaind A1 .. A disjoint elements in A. Then

If(t(fmfk))(t) d (X ..o Xn )(i)II~. 2 111 Y a(X @X )(Aj)I2o
-= l

n n lA(t)If_
<j= ajil®.,,®eUn(A.) = _ _t - _• _

which goes to zero as m,k -* for A A Therefore for each A A

lim fAfm(t)d(Xlog ..Xn)(t) exists. Next, since for each A c An and m > 1

1t is a simple function, i.e. there exist a• j=l, . ,t and disjoint

elemhents A1,...,A of A' such that

• ift I Am., (t),
,- - = - j.

.,thn From (3.10) and the definition of sv(Xa.. .X n );A)

tz

r ",,'%"
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I%, - I If f (t)d(Xl M I n ( I)[e- = IIj1[ ( ' X® a... OXn (A) I IH~

A j j1H

m

I IlfmlI j -p.Tll Xl®...-Xn (A) lI < IfmOI sv(XIa...oXn;A)
j1 7rnF

where
ItfmIl = sup I f (t)Il =max(atl,...,lc4).

If. tET 1
1

HC Hence we have that for each m>l f f (t)d(Xl0...axn)(t) is sV(Xla...OX )-con-
- . m - ( 1 . *Xn)t is Iv @ n'

tinuous. Then by the Vitali-Hahn-Saks Theorem (Dunford and Schwartz [31)

'fn(LAf)(t)d(X. X)(t)I n - 0 as sv(X 1Y...X n;A) - 0

uniformly in m=l,2.... Then condition (ii) in Definition 3.1 is satisfied

and hence f is X...Xintegrable.

Now assume that f is X1a... OX n- integrable, i.e. there exists a sequence

{fm IM>1 of An-measurable simple functions that satisfies conditions (i) and

(ii) of Definition 3.1. Next, since for each k,m f-fk is a simple function,

"- '. fm(t)_fk(t) = ~jlA.(t) say where a. IR j=l,...,t and A1 ,.. ,A, are

n n

-- disjoint elements in An, then for each A E A using Lenm 3.1(a)

I 1 nA(f -fk)(t) d(X...eX_ a. 2

; )~ ~ ~ ~ ~< <In(f -fk)(t)d(Xla ... eX )(t), fn1A(f -fk)(t)d (l..X)t>~
in A n Amk - (l On -)>e

a a. a. <X ... OX (A. nA), X *..X (A. rA)>
jl=l j2=1 l2 - 2 11 n

n .I I oI

-,'

I1*°,
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=nT f n 1AAt- (fmfk) (t) (fm-fk)Ii(t)dj'lH (i]® .. "® n (n(t).

~n rI A t(f nil (n)-

Next for each permutation R Tn defined in (3.7) is such that TF' n(14) =

for each permutation 1* distinct from the identity permutation. Then for each

H the above expression simplifies as follows

Si (f(-f t) d(Xlo ... 2Xn)(t)en

(n!) 1 1 (t)(fr(t)-fkM) 2d(ple...'D n ) Mt)

2But from Proposition 3.1 if m,k I (1A(fm-f k ) (t)d(X1 .. Xn) (t_9 1 n converges
An " S

to zero uniformly inAE A Then if S= uTSIT

S (t)(f m(t)-fk(t)) 2d(Uile...o~)(t) - 0 as m,k -;il Sp s - - . -Ou)

and since the measures , .'.'n are non-atomic ®,e .. =) 0 which

2implies that f'Ifm(t)-fk(t)I d 1 1..n)(t) - 0 as m,k - .

2
Thus {f m m> is a Cauchy sequence in L (1 a®... Op n ) and since by

Corollary 3.3 fm -* f in i 1 ...6n-measure then f belongs to L2 ',Ann).

The proof of the theorem is complete.

Since the multiple integral f f(t)d(Xl...OXn )(t) has been constructed

using the theory of integration w.r.t. vector valued measures this integral

inherits all properties from that theory including a dominated convergence

theorem (see [10] and [14]). Additional properties are also available for

this integral which uses the special structure of symmetric tensor product of

' -S

. - - .
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X"o ...OX (see [141). In particular we have the important properties of
f ne

f f(t)d(Xa".. OXn) (t) being He-valued (and hence EXP(H)-valued) and that for

n m

< f(t)d(Xla-'"Xn)(t), g(t)d(X "...OX m)(t)>e 0

4. PROIDJCT STOCHASTIC MFASURES

We now apply the results of Sections 2 and 3 to the construction of a

(symmetric tensor) product stochastic measure.

THEOREM 4.1. Let (Q,F,P) be a probability space, T = [0,1], A = B(T) and

X ,... ,X be a system of n > 1 zero mean independently scattered measures onn_

(T,A) such that Yt= (X1 (t)'...'X n(t)) is an n-dimensional stochastic process

with independent increments, where Xi(t) = Xi((0,t]) for i = 1,...,n. Then

2
there exists a unique L (Q)-valued P oduct Stcchcastc Measwoe X ..X on

n

(Tn'An) such that for A. E A i=l,...,n1

XI@... X (AX... XAn) X(A1)..X (An)" (4.1)

The symmetric tensor product in RHS of (4.1) is an element of the space H~n

for H = H o H where H and H are the Gaussian and generalized Poisson
g q g q

2
spaces associated with the L (Q)-independent increments process Y

Proof. Let gt T be the n-dimensional Gaussian process with independent increments

in the Levv- t6 decomposition of Yt" Let a be the centered Poisson random measure

on (T IR n ' A x B(IR )) (]R, = n \{0}) associated with the junps of Y and
00 0

having a-finite control measure V. Define the Gaussian Hilbert space subspace

of I,( )

~* nH = sp{aY(A): a E IRn , A E A) (4.2)
g - -

.". o. . ..
a dw ''' - ' " , " / *, ' ' " 4- , -¢.., . - '. - '...'' .. '.. .... .- , ' " ' ' . ,' .. . L " , "
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where Y(A) = (XI(A),...,Xn (A)), and let H be the generalized Poisson Hilbert
n 

nspace defined in (2.8) for (S,E,v) = (Tx Rn, A x O(IR n ),, ) . Define the Hilbert

space of random variables H = H * H which has inner product <.>H =
g qH

Then for each i=l,...,n Xi is an orthogonally scattered measure on (T,A) with

values in H and control measure

Wi(A) = E(Xi(A))2 (4.5)

Then the theorem follows applying Theorem 2.2 and Theorem 3.1.

"Te basic properties of the product stochastic measure Xi®... X aren

presented in the following result.

LFDWA 4.1. Let X and XlO...@X be as in Theorem 4.1. For i,i=l,...,n

and A,B E A define

ij B) E(X.(A)X(B)). (4.4)

Then:

W E(XI... a nX(A)) = 0 V A c An.

ii) VAR(XI®...X n(A)) - (n!) " 1 1 I. l (1),... - lnni(n)(A AI) V A An .

An Am

iii) For A A and B A (m<n)
CO(I... xn(A) , XI .. Ox (B)) 6 (n!1 .n

.... X n m 1 n I lI(1)®""n (n)

(iv) Xl®...@X is an L (o)-valued o.s.m. on (I ,A 1) with control measure given by
n

, . u~n(.A) = (n! - l1( ) ' ® nq )(A )  A A

(xl If Al ... A are pairwise disjoint sets in A

XI (Al )o... , xn (A n (n!) - 2 x1 (A1)...X n(An)

(vi) A real valued function f on Tn is X m ... OXn-integrable if and only if

nnf L 2(Tn, An u ... ft- n
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Proof. (i) - (iv) follow by Theorem 4.1, Lenuna 3.1 and Corollary 3.1. (vi)

follows by Theorem 3.2. To prove (v) use the facts that X (A ),...,X n(A ) are

mutually orthogonal,

li'i i n nX1 (A1 )@.. .@X(An (ni)1/2 o

n .... z e(

and apply (2.14) together with (2.7) and (2.12). The proof is complete.

Using the notation of Definition 3.1, from Lemma 4.1(vi) and Theorem 10.8

in [101 (see also [14, Prop. 2.3.3])

In(f;Xl ... Xn) = J f(t)d(Xl@....X n) (t)

is a continuous linear operator from L((2...OPn) to L2( ). We will see how

this integral includes most of the known multiple stochastic integrals.

Consider the case of "dependent integrators", i.e.

.ij(A) = sij(A) A E A

where (si) is an nxn non-negative definite matrix and p is a measure on (T,A)
13

satisfying the continuity property (1t6 [7]). Let f be a special elementary

function on Tn i.e.

f(t) = a. 1 (t)
S .in=l nn 1 in

where A1 ,... ,A is a collection of disjoint sets in A and a. I
I ,nare zero unless in,...,i n are all distinct. The linear manifold En of

special elementary functions is dense in L2(Tn,An,p ®n) ([7]). For f c E

define
WW
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p
= a.;X X X1 (Ai .xa(A.

n .. i=1 I n 1 n 1.n

Following ItO [7] (see also Fox and Taqqu [5]) we can extend this to a continuous

(.n)2 L2linear functional Jn: L(un) L (Q). This is the manner the multiple stochastic

integrals in [5], [7], [13] and [161 are constructed.

On the other hand, using Definition 3.1 and Lemma 4.1 (v), if f C En

pI. In (f;X 1 9 .. )Xn a. Xl1 (A il)o ... (X)A
.* ) 1(A
1 n 1 n

1 n

(n!)-1 /2  a. ~ X1(A ) ) = (n') - J

i..i1 n n 1n

Thus In and Jn are L2(Ql)-valued continuous linear functionals which agree (up

to a constant) on the dense linear manifold E and therefore they agree on alln

? J) n on
L2(1 ,An, A  ) Then the method of constructing f f(t)d(X1 a.. .aXn)(t) gives

1Jln -_

rise to the known "centered" multiple stochastic integrals, including

the multiple Wiener integrals of It6 [7], the multiple Poisson integrals of

Ogura 113] and Surgailis [16], and the multiple Wiener integrals with dependent

integrators of Fox and Taqqu [5]. This fact establishes a clear relationship

between the theory of vector valued measures and the theory of multiple

stochastic integrals.

-FMARK. In Theorem 4.1 we have assumed that T is an interval of the real line.

This has been done in order to apply the Levy-It8 decomposition of the process

Y If we only consider the Gaussian or the Poisson case, then it will not be

I7'ceC-;sarv to impose this restriction on T. In these cases T can be taken quite

general (see [141).
i's-

,

S--

-=". . . .. . . . . . . . . . . . . . . . . . . . . .
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5. C(CIPARISONS WITH OTHER PRODUCT STOCHASTIC MEASURES

Let (PF,P) and (TA) be as in the last section. Let {Xl,. .,Xn} be a

system of n>l stochastic process satisfying the regularity conditions in 14].

,ngcl and Kakutani (Engel (41) have considered the extension of X1X.. .XXn
2(defined in (1.1)) to an L2(0l)-valued product stochastic measure on the product

o-field An. Note that the condition (R4) in [4] imposes higher moments on the

XiIs. The idea of the proof of this extension (Theorem 4.5 in [4]) is to

partition the set Tn into disjoint pieces on which an appropriate L2 (Q)-valued

measure can be defined and then show that the sum of all these measures is the

required measure. This procedure uses a complicated double induction and

involves prior knowledge of what the measure X ...XX should look like, even
n

when the mean of each X. is zero. On the other hand the construction of the

symmetric tensor product stochastic measure Xl... (DX follows the more natural

ideas from the theory of product real valued measures and does not assumlo

higher moment conditions on the X.'s. Moreover, some of the combinatorial1

problems involved in the construction of XIx... xX are absorbed in the definition. Q n

of symmetric tensor product. In [4] it is not assumed that the mean of each
iS.... X. is zero as we have done in the construction of Xl1 0... OX .This zero mean

condition is satisfied in many interesting cases and enables us to use Hilbert

space methods in the construction of the (symmetric tensor) product stochastic

measure X10... X

As well as differences in the assumptions and in the techniques used there

are also important differences between the resulting product stochastic measures

X l... xX and Xl ... X . While the latter is always a centered measure (Lemma
I n 1 n'

4.1W) the measure Xx.. XX is not, even in the case when the mean of each X.
I n

is zero. For each permutation P of (1, ,n) let T' be as in (3.7). If

A.,

& ."'- -" " ".':--";" " " - -- - " " .- .4', " . . .-...
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A" An T fornsomeflthenX XX (A) =X 1 ...eX n(A) but in general theyII A 1o oeH t e l... nn

are not equal (see [141). As one can expect the X 1x...xX measure of the

"diagonals" is not zero while the XS... OXn measure is (see (3.3)). Then it
-- is natural to expect that integrals w.r.t. XIo... %Xn will be centered while

in the case of XlI...X n they will he u-,centered. Integrals w.r.t. Xli...X n

are easily constructed and the kind of Xo... a X-integrable functions can be

characterized. Enpel [4] does not characterize the class of Xx... Xn-integrable

functions. This last problem is not an easy one. A description of the class

of XX-integrable functions was obtained by Rosinski and Szulga in [151. The

last named authors have considered the product stochastic measure of an i.s.m.

with itself in such a way that XxX(AgA 2) = X(A1)X(A2) (A1A2  A) can be

extended to an L(Q)-valued vector measure on A under the assumption

that \(A) 1, () for A A. This corresponds to the case n=2 in [41.
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